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Abstract

The thermodynamic behavior of longofived paraexcitons confined to a

parabolic potential well is examined. The potential well is produced by a

Hertzian contact stress. A wavelengthftunable dye laser is used to create

excitons directly in the potential well or at any other localized point inside

the crystal. Spectral and spatial distributions of the exciton recombination

luminescence are measured for CW and pulsed excitation. The possibility of

Boso'instein condensation (BEC) of these long-lived excitons is examined both

theoretically and experimentally. We calculate the spectral and spatial

distribution of luminescence from a gas of non-interacting particles in a

threesimensional harmonicscillator well. The results are markedly

different for direct (nofphonon) and indirect (phonondssisted)

recombination. The calculated spectra are compared to the data for moderate

CW excitation at T th - 2 - 4.2_,Takn alone, the nojionon spectra

suggest that th. excitonic gas is in the quantum regime; however, this

conclusion is shown to be inconsistent with the estimated density of the
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gas. Aconslstent Interpretation of all spectral and spatial distributions is

possible, however, if one assumes Maxwell-Boltzmnn statistics and takes into

account the rapidly changing paraexciton intensity with applied stress. From

time and space-resolved studies of the ortho and para luminescence, plausible

causes for the saturation of paraexciton density in the strain well are

deduced. First, an Auger-like recombination of colliding paraexcitons seems

to limit their density - an idea supported by the observed power dependence

of ortho and paraexciton signals. Secondly, an anomalously slow

thermalization of strain-confined paraexcitons is observed.

PACS Nos: 71.35.+z
78.55.-a

Typed by: T. Watts
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I. Introduction

The possibility of Bose-Einstein Condensation (BEC) of excitons in

semiconductors has been actively pursued for many years. The exciton, or

bound electron-hole pair, is the basic electronic excited state of an

intrinsic semiconductor. Its light effective mass is a favorable factor for

the occurrence of BEC at moderate particle densities and relatively high

temperatures. Specifically, for an ideal gas of particles, a macroscopic

occupation of the ground state occurs at densities above nc W (6.2 x 10
15 cm-3)

g(m*/mo)T 3 / 2 . which yields nc = 2 x 1017 cM-3 at T - 10 K for an exciton mass

m equal to the free electron mass mo and a degeneracy factor of g - 1. The

observation of this quantum statistical effect, however, has proven quite

elusive, mainly due to coupling effects from exciton-exciton interactions.

For example, excitons may undergo a Mott transition to an electron-hole plasma

or condense into electron-hole droplets I before nc is reached. Recent studies

have therefore concentrated on crystals for which the Mott and/or spatial

condensation densities are expected to be higher than nc.

One excitonic system which was reported to have shown quantum statistical

effects is a gas of biexcitons in CuCl. Chase et al. 2 used two-photon

absorption of a high intensity laser to create a large initial density of

biexcitons at twice the photon wavevector. When a weak density of probe

particles was added to the system, a redistribution of these probe particles

in k-space strongly suggested the presence of a Bose condensate. Also,

excitons in Ge have been reported to show quantum statistical effects

characteristic of Bose particles. For uniaxially compressed Ge in a magnetic

field, Timofeev at al. 3 observed a narrowing of the exciton luminescence

lineshape with increased excitation, which they interpreted as evidence for

------------ | | m a m m • m as
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Bose-Einstein statistics. It was suggested that condensation might occur in

this system at temperatures below T - I K.

Another crystal which has been suggested as a good candidate for the

observation of excitonic BEC4 is Cu20. In this material the lowest exciton level (n

- 1) is split into two states: a triply-degenerate orthoexciton state and a

nondegenerate paraexciton state lying at 12 meV lower energy. Luminescence

experiments have been reported by Hulin et al.5 shoving evidence of Bose statistics

for the orthoexcitons. As the excitation level was increased, both the quantum

degeneracy and the temperature of the excitonic gas increased. Hulin et al.

concluded that the critical density nc for BEC was reached at their highest

excitation levels and T a 20 K. A subsequent theoretical study was carried out by

Haug and Kranz, 6 proposing that the data of Ref. 5 contained evidence that the

particle density was in fact exceeding nc. They noted the presence of a low energy

tail in the data which could be attributed to the scattering of excitons from a

condensed fraction of particles.

In this paper, we present a study of excitons in Cu20 confined in a stress-

induced parabolic potential well, with potential energy V(r) - or2. We employ a

Hertzian stress configuration to confine the excitons to a controlled volume inside

the crystal. This geometry looks appealing for the achievement of BEC of para-

excitons, since in principle one should be able to collect a bigh density of cold

particles, away from the hotter excitation spot and from undesirable surface

effects. We find that the paraexcitons exhibit a quasi-equilibrum in the parabolic

potential well. This is possible due to the long lifetime of paraexcitons, owing to

the fact that the radiative recombination of excitons is forbidden in Cu20, despite

the direct bend pp structure of this material. It was previously reported that

naturally grown crystals of Cu20 exhibited paraexciton lifetime exceeding a

microsecond. 7 We employ samples of the same material for our studies.
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Generally Bose-Einstein condensation is described for an ideal gas of

free particles in a region of constant potential. Significant changes are

expected, however, for Bose particles in an external potential. Therefore we

begin by examining theoretically the quantum-statistical behavior of bosons in

a parabolic potential well. Predictions are made concerning both the spatial

and energy distribution of the particles. Unlike the usual BEC for a constant

potential--which is is a k-space condensation--BEC in a harmonic-oscillator

potential implies a real-space condensation. We show that the spatial and

spectral luminescence profiles are expected to be quite different for no-

phonon and phonon-assisted excitonic recombination lines. 8 The spatial

distribution of phonon-assisted luminescence reflects the actual particle

density.

As will be shown, interpretation of the strain-confined paraexciton

luminescence spectra in terms of the above theory presents some ambiguities.

The measured spectra are found to be in good agreement with the theoretical

predictions and could be interpreted as due to an ideal gas of particles in

the quantum regime, close to BEC. However, calibration of the experimental

particle densities in the well precludes this possibility. This discrepancy

may be resolved by taking into account the strong stress dependence of

paraexciton luminescence intensity and using classical statistics.

In attempting to achieve high densities of paraexcitons, we encountered

some limitations associated with exciton - exciton collisions. Under

increasing laser excitation, the paraexciton signal is found to behave in a

very sublinear fashion. This sublinear behavior is explained in term of an

Auger-type recombination channel, where two excitons collide resulting in the

los of one electron-hole pair and the creation of a free electron and a free

hole which subsequently thermalize to form an orthoexciton. The final section
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of this paper characterizes these thermalization processes by time-resolved

luminescence measurements.

II. Bose Statistics in a Parabolic Well

We wish to predict the luminescence spectrum and spatial distribution of

excitons that are confined in a 3-dimensional harmonic oscillator potential,

V(r) - cr 2 . If it is assumed that they behave as a classical gas and that the

matrix element for radiative recombination is independent of wavevector and

spatial position, the spatial profile can be obtained quite simply. For a

classical gas, the internal chemical potential is pint = kBT ln(n/nq), where n

- n(r) is the density and n - (m *k T/2r))3/2 is the quantum density.9 The
q B

total chemical potential, U, is the sum of the internal and external chemical

potential (pext " ar2). Since v = constant in the potential well, one obtains

kBT ln(n(o)/nq) - kBT ln(n(r)/n q) + cr2  (1)

which has the solution

n(r) - n(o) exp(-ar 2/k BT). (2)

One way of obtaining the luminescence lineshape under the above

assumptions is to note that a harmonic oscillator has energy levels Es M (s +

3/2)Kw with w - (2/m*) 1/2 and s - 1,...-. Each level has a degeneracy of (s

+ )(s + 2)/2. Since the energy levels are equally spaced, the density of

jv
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states is given by the degeneracy. For typical experiments W6 10-9 eV <<

kBT, implying that most particles are in states s >> 1. The density of states

then varies as E2 . Assuming a Maxwell-Boltzmann population of these states,

the luminescence lineshape is predicted to be,

I(E) c E2 exp(-E/kBT ). (3)

As the exciton gas approaches degeneracy (n + n q), the above equations do

not hold. Indeed, there is not a closed-form expression for the chemical

potential of degenerate Bose gas as a function of density. One method of

calculating the spatial profile is to sum over the probability distribution

for harmonic oscillator wavefunctions, 1,12, weighted by the probability of

-I
occupation of the state, (exp[(E - u)/kBT] - 11 . Alternatively, one can

consider the confined gas as a sum of small volumes with nearly uniform

density, which is the approach we now take. The results depend upon whether

the observed recombination light is due to a no-phonon or phonon-assisted

transition. The no-phonon transition is constrained (locally) to the K - 0

selection rule, whereas the phonon-assisted transition can sample a full range

of exciton wavevectors.

Phonon-assisted transiti-ns

Suppose that the spatial profiles and luminescence lineshapes are given

by the sum of local lineshapes, which are dependent on the spatial position.

For phonon-assisted recombination in which the matrix element is assumed

independent of wavevector, the local lineshape is given by



I(E, 00&ioc (E,r)
oc exp((E - Ploc)/kBT] _ I

where loc (E,r) - (E - ar2 ) 1/2 is the local density of states, Elo c

E - mr2 is the local kinetic energy, and loc - ar2 is the local internal

chemical potential. The total chemical potential U is independent of position

r. The spatial profile is obtained by integrating Eq. 4 over energy. Note

that E must be greater than ar 2 . This yields

exp[-n(ar - )/kBTI
I(r) 3/2 (5)

n-1 n

If the system is not degenerate (U is large and negative), this reduces to the

form of Eq. 2, because only the first term in the sum will contribute.

Similarly, the luminescence lineshape is obtained by integrating Eq. 4 over

all space. This yields

I(E) E 2 , (6)

exp [(E - W)/kB T - I

which reduces to the form of Eq. 3 for a nondegenerate system.

Shown in Fig. la is Eq. 6 for various values of p at T - 2K. In Fig. lb

is Eq. 5 integrated over the yz plane ("slit scans") for the same values of 4

and T as above. These calculations display very little change in the spectral

lineshape or the spatial profile when degeneracy is assumed. The width of the

spectral lineshape does not change noticeably, but the peak of the
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distribution does shift somewhat to lower energy. The spatial profile narrows

only slightly.

Because the ground state is excluded in the above calculations, a

schematic representation of its effect is shown in the bottom traces of Figs.

la and lb. The ground state population is simply included as a spike on the

low energy edge of the spectrum and in the center of the parabolic well,

respectively. This illustrates an important aspect of strain-confined

excitons: BEC into the lowest energy level (the harmonic oscillator ground

state) implies a spatial condensation. This is unlike the constant-potential

case, for which there is a condensation to K = 0 in wavevector space, not a

spatial condensation.

A proper calculation of the particle distribution with the inclusion of

the ground state needs to be done. Specifically, the low energy spike on the

spectral lineshape could be broadened due to interactions in the condensate.

The recombination event may involve simultaneous emission or absorption of a

coherent ground state excitation, as pointed out by Haug and Kranz.
6

The above analysis indicates that for phonon-assisted transitions, which

sample the entire exciton energy distribution, the approach to quantum

statistics will not be easily seen. Only when the system reaches the BEC

density and there is a partial condensate will there be definite signs of

degeneracy.

Direct transitions

In the case of a direct-gap semiconductor, no-phonon transitions are also

observable. No-phonon transitions sample the states near K - 0, specifically

those with wavevectors equal to the emitted photon wavevector. The photon
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momentum is usually small compared to the spread of momentum in the system of

particles. One can calculate the luminescence distributions by summing local

lineshapes again. Assuming that the no-phonon transition is vertical (i.e.

ignoring the photon momentum), the local lineshape is given by

I (~r)6(Elo)
Iloc(Er) exp[(E - lo)/kT] - 1 (7)

loc - Ploc ),B

where the 6-function picks out the local zero kinetic energy state, with the

number of particles in this state being given by the Bose factor. To obtain

the spatial profile, one integrates Eq. 7 with respect to energy. This is

quite easily done because of the 6-function, and one obtains

I2 a . (8)
exp[(ar - )/kBT] - I

Eq. 8 reduces to the form of Eq. 2 for a nondegenerate system (p large and

negative). The luminescence lineshape is obtained by integrating Eq. 7 over

all space, which yields

I(E) E . (9)

exp[(E - p)/kB T - 1

The lineshape is significantly different from Eq. 6 in that Eq. 9 has an E1
/2

multiplier while Eq. 6 has an E2 multiplier.



Shown in Fig. 2a is Eq. 9 for various values of 0 at T 2K. In Fig. 2b

is Eq. 8 integrated over the yz plane for the same values of p and T. In this

case of no-phonon transitions, there is a significant change in the

luminescence lineshape and spatial profile as the system becomes degenerate.

This is due to the local K = 0 selection along with the fact the density is

higher in the center of the well, implying higher degeneracy there. A more

degenerate local lineshape (remember ploc = p - ar2 ) has a larger number of

particles in the Elo c = 0 state. This effect implies a sharper measured

spatial profile than for the phonon-assisted spatial distribution, which

samples all K-vectors. Shown as the bottom trace in each part of Fig. 2 is

schematically what would be expected for a partially condensed system. Both

Eqs. 8 and 9 contain singularities when p = 0. These are indicated by the

arrows pointing upward.

From this analysis of the no-phonon lineshape and spatial profiles, it

appears that the no-phonon line should be useful when searching for Bose

statistical effects for excitons confined in a parabolic well. There are

gradual changes in the lineshape and spatial profile which signal the onset of

quantum degeneracy, in contrast to the phonon-assisted transitions. However,

the phonon-assisted transition may provide a more definitive identification of

condensation.

Contrasts with constant-potential case

For BEC in a harmonic oscillator well, the parameter which determines the

occurence of condensation at a given temperature is the total number of

particles in the well rather than the density. This is seen by calculating

the total number of particles in the well
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(s + )(s + 2)/2
N g (10)

s exp{[(n + 3/2)%w - j]/kB T - 1

where g is an additional degeneracy factor (e.g., a spin-like degeneracy).

Setting U - 0 to obtain the maximum number that can be held in the excited

states in equilibrium, assuming s >> I as before, and changing the sum over s

to an integral over ds, one obtains

N = g (1.202) (k BT/w)3  (11)
cB

This critical number can be "converted" to a critical density by dividing by

the volume of the well occupied by excitons, as determined by the full-width

at half-maximum (FWHM) of the spatial distribution; i.e.,

well
n = N /A, with the effective volume given by

c c

( ) (2.77kBT/a)3 /2  (12)

The factor 2.77 comes from choosing the FWHM of the density profile rather

than, say, the l/e point. The simple Gaussian spatial profile result is

assumed because there is only a minor change in the width of the spatial

distribution of the particles in the excited states when approaching Bose

degeneracy, as shown above. (The phonon-assisted transition, Fig. ib, mimics

the local density whereas the no-phonon transition, Fig. 2b, does not.) This

results in a critical density given by

nwell (T) - 0.176 -AM3/ (k T)3/2 (13)
c 3 B
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Note that the well parameter a does not appear in Eq.13. This may be compared

with the result for "particles in a box", which is
9

e3/2 3/2
free (T) - 0.166 . (14)

There is little difference between the densities in Eqs. 13 and 14. For this

reason, one can still speak of a critical density for BEC of excitons in a

parabolic well, with this density being the same as that for "free" particles.

III. Strain Confinement of Paraexcitons

To produce a parabolic well inside the crystal, an inhomogeneous stress

is applied to the sample by pressing a rounded plunger against one face of the

sample. This Hertzian stress geometry has been described elsewhere for the

indirect-gap semiconductors Si and Ge.1 0 'I I A maximum of shear stress is

produced at a finite distance into the sample. As discussed below, the

excitons are attracted to this shear-stress maximum (SSM) and confined

there. The parabolic dependence of the external potential acting on the

excitons comes about from a Taylor expansion of the stress distribution near

the SSM.

Excitons are attracted to a SSM if their energy is lowered by the

application of a shearing stress. For paraexcitons in Cu2 0, the application

of an uniaxial stress along a four-fold axis lowers their energy as reported

in an earlier paper. 12 Waters et al. 13 have shown through second order

perturbation theory that the paraexciton energy as a function of stress can be

expressed in the following form:
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Epara = A + Bo - Cv2  (15)

where a is the magnitude of the uniaxial stress. Each term is easily

identified. A is the unperturbed paraexciton energy, Bo is due to the

dilational term in the strain Hamiltonian, and Ca 2 is from a tcrm of lowered

symmetry in the strain Hamiltonian. It is the dominance of the Ca2 term at

high applied stresses that makes the SSM an energy minimum for the

paraexcitons because this term incorporates non-dilational (shear) strains.

Shown in Fig. 3 are two spectra. The lower trace is a photoluminescence

spectrum from a crystal with no stress applied and excited by an argon-ion

laser. Xo denotes orthoexciton no-phonon line; the other lines are optical

phonon replicas of the orthoexciton line and are identified by the symmetry of

the phonon emitted. One exception is a phonon replica of the paraexciton

labeled Xp - r2 5-. The upper trace is a spectrum taken from the SSM at an

approximate stress of 3.6 kbar. Note that the wavelength scale is shifted.

An additional line appears under the application of a symmetry-lowering stress

and is identified as the no-phonon line of the paraexciton,14 Xp. This

spectrum is obtained by resonantly pumping (with a tunable dye laser) the

down-shifted phonon-assisted orthoexciton absorption band at a spatial

position "below" the well. The longer-lived paraexcitons drift into the

well. The appearance of a relatively small orthoexciton signal, in comparison

to the much stronger no-phonon paraexciton line, comes from orthoexcitons

created by Auger decay of paraexcitons in the well, as discussed later.

The dependence of the paraexciton energy (position of the Xp line) on

applied stress is shown in Fig. 4. The stress is calibrated using the

measured energy position of the down-shifted orthoexciton line and the data of

Waters et al. 13 who measured the orthoexciton energy as a function of applied

000
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uniaxial stress. The solid curve is a fit of Eq. 15 to the data, yielding the

values of A, B, and C given in the figure caption. The initial rise of the

paraexciton energy is due to the B term but the Cv2 dominates at high

stresses to give an energy minimum at the SSM.

In the present experiment, a glass plunger with radius of curvature

- 2.5 cm was pressed against a (100) face of a Cu20 crystal with dimensions

1.5 x 1.5 x 1.5 m . Figure 5 is a photograph of the stressed crystal at T =

1.5 K with Ar+ laser surface excitation (X = 5145A). The bright spot Just

below the top of the crystal is luminescence due to excitons confined near the

SSM. In this case, the excitons must drift about I mm from the surface into

the potential well. The drift path is barely visible. The luminescence above

the sample is due to a reflection from the glass plunger.

IV. Luminescence Lineshapes and Spatial Profiles

To obtain the proper luminescence lineshape of excitons confined to

parabolic well, one must collect light from all parts of the well while

maintaining high spectral resolution. In this work, a method of "dynamic

spatial integration" is used to obtain such a luminescence spectrum. A 6x

magnified image of the sample is projected onto the entrance slit of a I meter

spectrometer. (See Fig. t of Ref. 15.) A I m wide aperture is used to

select spatially the well area in the vertical dimension. The size of the

entrance slit is kept small in order to have a high spectral resolution; but

this narrow slit could sample only a fraction of the well. To integrate over

all portions of the well, the image of the sample is scanned horizontally

across the slit at a 5 to 10 Hz repetition rate using a triangular waveform to
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drive the galvanometer so that there is equal integration times for all

portions of the vell. The total integration time is ; I second so that many

passes of the image are sampled at each wavelength.

The next data to be described have been obtained by pumping with a

tunable dye laser the orthoexciton "below" the well, resulting in subsequent

particle drift upwards into the well (see inset of Fig. 6). The wavelength of

the dye laser is tuned to the low energy edge of the locally down-shifted

orthoexciton phonon-assisted absorption band, resulting in an excited region

of the crystal about 0.5 m in length. Incident laser power is low, about 0.3

mW CW, with about 10% absorption. Each absorbed photon is converted into an

orthoexciton and a 110 cm-1 optical phonon. The orthoexcitons rapidly down-

convert to paraexcitons 7,16 which then drift upwards into the well.

In Fig. 6 no-phonon paraexciton lineshapes taken at three different

temperatures are displayed. Also shown are fits of Eq. 9 to the data assuming

nondegeneracy (I(E) a E1 /2 exp(-E/kBT)) and using temperature as the main fit

parameter. (The two other fit parameters are peak intensity and energy

offset.) Both fit and bath temperatures are given.

Phonon-assisted paraexciton lineshapes were also taken under identical

excitation conditions. Shown in Fig. 7 are phonon-assisted lineshapes taken

at the same bath temperatures as in Fig. 6. These spectra are difficult to

obtain because of the weak signal and the proximity of phonon-assisted

orthoexciton lines. The applied stress for all the data described in this

section (a - 3.6 kbar) is chosen so that the paraexciton phonon-assisted line

is optimally separated from the nearby orthoexciton phonon-assisted lines.

Also shown in Fig. 7 are fits of Eq. 6 to the data assuming nondegeneracy

(i.e., I(E) - E2 exp(-E/kBT)). Again, temperature is the main fit parameter.

First consider the bottom spectrum in Fig. 7. The fit temperature of 3.0 K is
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higher than the fit temperature of 2.3K for the no-phonon line. There is a

similar discrepancy for the middle and top spectra in Figs. 6 and 7. Due to

the ambiguity of the baseline for the phonon-assisted line at higher tempera-

tures, the temperature derived from the top spectrum in Fig. 7 has some

uncertainty (about ± 1.5 K).

Clearly, the procedure used for fitting the data of Figs. 6 and 7 is

inadequate, since the direct and phonon assisted emission lines should yield

the same temperature, which is not the case here. What could be causing a

difference between the fit temperatures of the no-phonon and phonon-assisted

spectra? One possibility is to introduce quantum degeneracy, which will

affect the no-phonon lineshape much more than the phonon-assisted line, as

explained in the previous section. Shown in Fig. 8 are the same data as in

Fig. 6 but the theoretical fits to the data (the solid dots) are obtained from

Eq. 9, assuming some degree of degeneracy. The temperatures introduced for

bath temperatures 4 3 K are fixed by the phonon-assisted lineshape fits of

Fig. 7. The chemical potential is then the main fitting parameter in Fig.

8. The temperature and chemical potential for the theoretical fits are given

at the left of each spectrum. The top spectrum is fit by allowing both T and

U to vary. The fit temperature turns out to be the same as that shown for the

top spectrum of Fig. 7. For comparison, nondegenerate lineshapes with the same

effective temperature as for the degenerate fits are also shown in Fig. 8.

So far the assumption of Bose degeneracy would explain both the no-phonon

and phonon-assisted luminescence lineshapes. The next question is whether the

exciton densities are high enough to justify the assumption of Bose

degeneracy. In order to estimate the density, the relation N - GTi is used,

where N is the number of excitons, G is the generation rate of excitons, and
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T is the initial decay-time of the excitons. Knowing the incident power of

about 0.3 4W with 10% absorption and an initial decay-time of order 0.3 us,

then assuming 100Z exciton-creation and well-collection efficiency, one

obtains the estimated number of excitons in the well to be w 2.8 x 107. The

volume occupied is obtained from the measured spatial FWHH, here about 100

Mm. This gives a volume of - 5 x 10- 7 cm3 . The estimated exciton density is

then a 5.6 x 101 cm 3 . This is more than three orders of magnitude below the

critical density obtained from Eq. 4.13, which gives nc o 10 1
7cm 3 at T - 2

K. For this reason, we are lead to the conclusion that the existence of Bose

degeneracy at this low excitation level is highly unlikely. Thus, the above

analysis illustrates the danger in using only spectroscopic information to

determine the degeneracy of the excitonic system.

What could be an alternate explanation? A plausible explanation is as

follows: Consider the assumptions made in deriving the expressions for the

lineshapes and spatial profiles. The matrix element was assumed independent

of spatial position. Yet, it is known that the intensity of the no-phonon

paraexciton line is dependent on the applied stress. Kreingol'd and akarov 1 7

reported the intensity of the no-phonon paraexciton line to behave as a2 where

a is the magnitude of the applied stress. The paraexcitons in a stress

induced potential well do experience a range of stresses. The intensity of

the phonon-assisted line is not greatly affected by stress; hence, it is

assumed to have a constant matrix element over the range of stresses in the

well.

However, the 02 intensity dependence can affect the no-phonon

luminescence lineshape emitted from the well. Eq. 7 must be modified to

include the spatial dependence of the matrix element. Let the intensity of

the paraexciton be given by Ip M 02 . If the magnitude of the stress at the
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SSM is a then the stress distribution around the SSM can be expressed as

a - oo M -Sr2  (16)

where S is the second derivative of stress with respect to r, evaluated at r -

0 (the center of the well). Expanding Ip about ao, one obtains

p - 0o + 20o(a - c + 20(a - a )2 (17)

Substituting Eq. 16 into Eq. 17, one obtains the spatial dependence of the

paraexciton intensity (which is proportional to the square of the matrix

element). Eq. 7 now becomes

[so 2 _ 20o Sr2 + 26S24] (E r o)

I(E,r) 0 (18)
exp[(lE1 oc - loc )/kBTI - 1

Integrating over all space now yields

E1 /2 _ 2nE
31 2 + 2n 

2 E5/ 2
I(E) a- (19)

exp[(E - U)/kB T - 1

where n - SW(oae). The second and third terms in tha numerator represent the

correction to Eq. 9 due to the stress dependence of the intensity. One can

estimte the parameter n knowing that S - a /z0
2 , where z is the distance of

the SSU from the top surface 18 (see Fig. 5). Using the values

00 a 3.6 kbar and so - 0.25 m, one gets S - 57 kbar/lm 2 . With a typical

A
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a - 50 meV/mm2  this yields n - 0.3 meV - or 300 eV- . Equation 19 is shown

as the solid curve in Fig. 9 for T = 7.5 K and n - 300 eV-I and assuming

classical statistics (P >> kBT). The other curves are the components of this

lineshape corresponding to the different terms in Eq. 19 taken separately with

the occupation probability factor, exp[-E/kB T. They show that the stress-

dependent intensity correction is significant. The open circles are the EI / 2

term, the open squares are the E3 /2 term, and the crosses are the E5 /2 term.

The relative magnitudes of the plots correspond to the relative multipliers

for each term. Comparing the solid curve with the open circle curve, one sees

that Eq. 19 is narrower than Eq. 9 for a given temperature.

Shown in Fig. 10 are the no-phonon lineshapes with Eq. 19 fit to the

data. Both the temperature and the parameter n are allowed to vary

initally. It is found that n - 300 eV-1 gives fairly consistent results for

all the bath temperatures, with the fit temperature close to the phonon-

assisted lineshapes at the lower temperatures. Slight differences between the

fit temperature of the no-phonon and the phonon-assisted lineshapes still

exist for bath temperatures of 2 K and below. Basically, the spectral

inconsistencies seem to be resolved by including the stress dependence of the

no-phonon luminescence intensity. The Maxwell-Boltzmann statistics used are

consistent with the estimated density.

Consider, now the spatial profile taking into account the stress-

dependent intensity of the no-phonon line. One must integrate Eq. 18 with

respect to energy. This yields

1 - 2ar2 + 22a2r4  (20)
1(r) £ expf(ar2 - u)/kaT - I

Assuming nondegeneracy, and then integrating over the yz plane, one obtains

.. .. . --.- .m.mwmaa~aummm m~ Ib= m----m m •0 0
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2~ k BT 2 +(2 kBT]2  _x2I(x) a {I - 2[na(x + k.-) + -]+2)] } exp(-ax /k BT) . (21)

Shown in Fig. 11 are spatial profiles of the no-phonon line taken at the same

bath temperatures as the above described lineshapes. The solid dots are fits

of Eq. 21 to the data using n - 300 eV-1 and the temperatures from the fits in

Fig. 10. The well parameter, a, was allowed to vary. It is found that

a - 53 meV/mm2 gives the best fit to spatial distributions at all

temperatures. One sees that there is excellent agreement and consistency

among the spatial profiles and the luminescence lineshapes. Note that for all

the data described above, the same values of n and a is used for all

temperatures.

One conclusion that must be drawn from this data is that the paraexcitons

in the parabolic well do not seem to thermalize completely with respect to the

lattice within their lifetime. This is in contrast with data taken on

crystals under zero applied stress, where thermalized paraexciton lineshapes

are observed even for much higher excitation conditions. Notice that the fit

temperature in Fig. 10 are always greater than the bath temperature, and the

disparity decreases as the bath temperature is lowered. This is opposite to

what one might expect based on the fact that the phonon scattering time

increases as temperature is lowered, which should result in longer

thermalization times at lower temperatures. There is, however, an additional

"thermalization" that must take place in this case, i.e., a spatial

thermalizatIon. The paraexcitons must fill the well volume, creating an

equilibrium spatial distribution under the application of this external

potential. At the higher temperatures, the equilibrium size of the spatial

profile ts larger than at low temperatures (see Eqs. 2 and 12). Also, the
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diffusivity of the paraexcitons at high temperatures is much smaller than at

the lowe temperatures 1; therefore, it takes longer for the excitons to fill

the well at the higher temperatures. These factors would produce a larger

disparity between the fit and bath temperatures at the higher bath

temperatures.

V. Kinetics of Ortho- and Paraexcitons

The previous data was obtained at a relatively low level of excitation,

an absorbed power of a 0.03 mW. To increase the density of excitons, one

naturally should increase the laser intensity. In so doing, we discovered

that the paraexciton intensity (assumed proportional to the number of

particles) increased in a sublinear fashion. Another puzzling observation was

that an orthoexciton luminescence signal emanated from the well region even

when the excitation poi L.4as at a considerable distance away from the well

(see Fig. 3). The short orthoexciton lifetime (- 3 ns) 7,16 should preclude

travel over macroscopic distances. Also, thermal population of the

orthoexciton level should be negligibly small: exp(-AE/kBT) - 7 x 10- 2 1 for

an ortho-para splitting AE - 8 meV and temperature T = 2 K.

Shown in Fig. 12 is the relative intensity of both ortho- and paraexciton

luminescence from the well as a function of absorbed laser power, P. The

excitation configuration is the same as that described in the previous section

-- the laser absorption occurs in a region separated from the well by about

400 jm and the excitons drift into the well. The intensity of the

orthoexciton was obtained from the 110 cm-1 optical phonon replica

(X° - r 2). Notice the strongly sublinear behavior of the paraexciton
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intensity at high excitation: it is nearly a P1/4 dependence. The laser beam

was mechanically chopped with a 4% duty factor at the higher powers to avoid

crystal heating. The power dependence of the orthoexciton intensity is

significantly different from that of the paraexciton. In fact, the

orthoexciton intensity seems to behave approximately as the square of the

paraexciton intensity.

The power dependences of the ortho- and paraexciton intensities can be

modeled by rate equations. There are two spatial regions that must be

considered: the region where the laser light is absorbed and the region of

potential well. First consider the pumped region away from the well. Let No

and Np be the number of ortho- and paraexcitons in this region. The

orthoexcitons are generated at a rate, G, determined by the number of photons

absorbed per unit time, t. The resulting equations are

3N N N 22a)at ___- +_T - aN2

p dc

and

aN N (22b)
-° G - + -

at Tdc

where T is the radiative lifetime of the paraexciton, Tdc is the down-P

conversion time for the creation of paraexcitons from orthoexcitons. The

aN2 term is due to an Auger decay process 19 in which two paraexcitons collide
p

resulting in the loss of one electron-hole pair and the ionization of one

paraexciton into a free electron and a free hole; therefore, the two

colliding paraexcitons are lost in this process. The free electron and free
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hole are assumed to form an orthoexciton; hence, this is a source of

orthoexcitons (third term on the right hand side of Eq. 22b) but has the

weighting 1/2 in the equation for the number of orthoexcitons. It is assumed

that the number of orthoexcitons is small in comparison with the number of

paraexcitons, i.e., there are no terms involving collisions between two

orthoexcitons or between an ortho- and a paraexciton. This is a reasonable

assumption in steady state because the orthoexciton down-conversion rate is

much more rapid than the paraexciton decay rate.

Now consider the region of the potential well. The equations for this

region are virtually identical to those above with the exception of the

generation term. The source term of paraexcitons is assumed to be from

drifting into the well, at a rate Gp, which is assumed proportional to Np.

Let n0 and n be the number of ortho- and paraexcitons in the well. The rateo p

equations for the well region are then

an n n (23a)

at p Tp p Tdc

an n a 2 (23b)
= - + - n

at Tdc 2 p

Again, the number of orthoexcitons is assumed small compared to the number of

paraexcitons in steady state. Solving Eqs. 22 and 23 for the number of

paraexcitons in steady state yields

N ___/__I[-1 + /1 + 2aGt ] (24a)
p aT pP

+ /i+2a o2'
n at- [-. (24b)

p T
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In steady state, Eq. 23b shows that no is proportional to np2 . Assuming Gp =

cNp, where c can be thought of as the well capture rate, one obtains

n - 1 - +I + 2cT [-1 + .i + 2aGt 2  (25a)
p aT p pp

aTdc 2
n - n (25b)o 2 p

The solid curve marked I in Fig. 12 is Eq. 25a with T = 0.5 ps , a =P

0.05 sec -1 , and c = I x 106 sec -1. The value of T is determined by a lowP

power decay-time measurement to be described below. The parameters a and c

are both allowed to vary initially. It is found that the shape of the curve

is more sensitive to the value of a than that of c.

One can independently estimate the value of c in the following manner.

The product cN is the number of paraexcitons per unit time flowing into the

well. The number which reach the well is of order

Npexp(-ttransit /T p), with ttransit equal to the amount of time a particle

takes to reach the well from the pumped region of the crystal. This gives c =

(exp (-t transit/T p ))/ttransit . Now ttransit = Ax/vd , where Ax,

the distance traveled, is approximately 0.4 mm, and vd, the drift velocity, is

approximately I x 105 cm/s. This yields c - I x 106 sec - . The parameter c

is fixed at this value and the parameter a is varied to give a reasonable fit

to the data. The line marked 2 is Eq. 25b with the adjustment of an overall

multiplier to give the appropriate vertical scale.

The nearly P 1 / 4 behavior of the paraexciton intensity in the data

described above is due to an Auger decay process at two different regions of
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the crystal. If one were to create the excitons directly in the well area,

one region is eliminated and the power dependence of the paraexciton intensity

should be P1/2 . This is seen by assuming Gp M P in Eq. 24b. Shown in Fig. 13

is the extracted density of paraexcitons in the well when the laser is pumping

the well area directly. This data shows the predicted P1/2 dependence. (The

corresponding orthoexciton intensity data was not taken at that time.) Thus,

the data from this simpler pumping configuration support the basic rate

equations we have used.

Another test of this model is provided by the transient decay of the two

types of excitons. Shown in Fig. 14 are time decays of the ortho- and

paraexciton signals after resonant creation of orthoexcitons at the "bottom"

of the well (i.e., the laser was tuned to the orthoexciton quadrupole

resonance at the SSM). The dye laser was cavity-dumped. After an initial

fast decay, the orthoexciton signal decays at twice the rate of the

paraexciton signal. This is consistent with the Auger decay mechanism as can

be seen by substituting into Eqs. 22 a solution of the form N = Noexp

(-t/Teff) for both the ortho- and paraexciton number (a different Teff for

each). The generation rate G is zero at times after t = 0. With the

additional information that Tdc is of order a few nanoseconds, 16 and that the

measured decay-times are a few tens to hundreds of nanoseconds, Tdc can then

be ignored in comparison to Teff for the orthoexcitons. This easily yields

the results that the decay-time for the paraexcitons should be twice that of

the orthoexcitons.

The inset to Fig 14 shows the measured paraexciton decay-times for three

incident powers. Estimation of absorbed power is impossible because of the

pumping configuration. Both the initial and the later decay-times are

given. The decay-times decrease as the power is lowered, as expected for an
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Auger loss mechanism. At the lowest power, there is little difference between

the fast and the slow decay-times. It is this low power decay curve which is

the source of the value of T used above.

VI. Thermalization of Excitons in a Parabolic Well

A basic question that is raised by all the above data is whether

paraexcitons energetically and spatially thermalize in the parabolic well. To

gain more insight into what is happening, time-resolved spectra and spatial

profiles were taken under various excitation conditions. Before discussing

data taken from the well area, contrasting data taken under high-powered

pulsed excitation with no stress applied to the crystal will be discussed

briefly.

Shown in Fig. 15 are some time-resolved spectra of the phonon-assisted

paraexciton line following pulsed excitation of the crystal at a bath

temperature of 2 K. The peak incident power was about 3 watts and the pulse

length was about 15 ns (cavity-dumped dye laser). The laser was tuned into

the phonon-assisted orthoexciton absorption band with an absorption length of

about 0.3 mm. The time t=0 corresponds to the peak of the laser pulse.

Theoretical fits to the spectra are an E1/2exp(-E/kBT) Maxwell-Boltzmann

distribution with temperature as a variable parameter. The fit temperatures

are shown at the left. Note that the paraexcitons display a nearly

thermalized distribution of particle energies at short delay times after the

intense laser pulse.

Now consider data taken from the well under rather mild excitation

conditions. The laser was tuned to the orthoexciton quadrupole resonance at
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the SSM ("bottom" of the well). The incident peak power was about

0.5 W. Estimation of the absorbed power was impossible because of the pumping

configuration, but it should be a very small fraction of the incident power

due to the weakness of the quadrupole transition and the short distance over

which the absorption takes place. Shown in Fig. 16a are the resulting time-

resolved spectra. The time delay between displayed spectra is 80 ns. At

early times the spectra are narrow due to the narrowness of the spatial

distribution. As the excitons diffuse outward to fill the well, the spectra

broaden correspondingly. Shown in Fig. 16b is an effective temperature, which

is a measure of the width of the spectrum, as a function of time. This

effective temperature was obtained by assuming a simple E1/2exp(-E/kBTeff)

lineshape which yields 1.8kBTeff for the value of the FWHM. No attempts were

made to correct for the stress dependent intensity of the paraexciton no-

phonon transition. The feature of note is that at later times the excitons

seem to exhibit an effective temperature higher than that of the bath, and the

thermalization seems to be very slow. This is in direct contrast to the more

rapid thermalization observed at zero stress (Fig. 15).

Shown in Fig. 17a are time-resolved spatial profiles taken under

virtually identical experimental conditions as above. Again, the time delay

between displayed profiles is 80 ns. Initially the spatial distribution has a

narrow width as determined by the size of the laser beam. As the excitons

diffuse outward to fill the well, the width grows. Shown in Fig. 17b is the

square of the FWHM, A, as function of time. The width of the spatial profile

does decrease slightly at longer times, possibly indicating a cooling process.

One can model this diffusive-like expansion process by assuming that the

mean free path of excitons between collisions with phonons is small compared

to the macroscopic dimension of the potential well. This allows one to model
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the external potential as providing a spatially varying motive force on the

excitons which determines a "local" drift velocity. Along one dimension, an

external potential of ax2 gives a force, F(x) - -2ax. This results in a

"local" drift velocity, v(x) - F(x) T/m , where T is the phonon scattering

time. Particle conservation, with a sink due to the finite lifetime of the

excitons, then yields the following differential equation

an a2n n n(26)
- D- O - +yn + y-- T(2ax

where y - 2a[/M *, n - n(x,t) is the local 'ensity" of particles, D is the

diffusion constant, and T. is the particle lifetime. The solution to this

equation which is a 6-function at x 0 0, t - 0 is

1 -x 2  -t/__ ___ __

n(xt) 7 D exp D e (27)
4 (1 - e 4 - (1 - e- 2yt

The FWHM of this distribution is given by

62(t) - 2.77(4) D (1 - ). (28)

The solid line in Fig. 17b is a fit of Eq. 28'to the data allowing D,

y, and the "zero" of time to vary. (This is required because the spatial

distribution has a finite size when created by the laser.) The resultant

parameters are given in the figure caption. A value of D - 190 cm2/s is

obtained from the fit. This reasonably consistent with the measured 15 drift

mobility of paraexcitons at a lattice temperature of 2 K and at a high applied
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stress. Specifically, u - 7.5 x 105 cm2 /eV-s implies D = 130 cm2 /s from D

= ukBT.

Finally, experiments have been performed at the highest paraexciton

densities possible with the apparatus. The laser wavelength and spatial

position are adjusted to give the maximum no-phonon paraexciton signal from

the well. The optimal excitation configuration is very similar to that used

to obtain the potential-well luminescence lineshapes described in section

IV. The differences are that the laser wavelength is shorter, resulting in an

absorptLon region nearly the width of the sample, and the vertical position of

the pump beam is closer to the well area. Maximum available cavity-dumped dye

laser power is used, about 5 W peak incident on the sample. The fraction of

absorbed power is in the range 10-20%, as determined from transmission

measurements in similar configurations.

Shown in Fig. 18 are time-resolved spectra taken from the well area under

these extreme excitation conditions. The time delay between displayed spectra

is 80 ns. The very strange shape of the spectra at early times (bottom

spectrum) is due to paraexcitons decaying on their way into the well. Since

they decay in a region of the crystal at a lower stress, the emitted light

will be of higher energy. Note the long time (- 200 ns) it takes the excitons

to finally arrive in the well and display a Maxwellian lineshape. This is

interpreted as due to a true lattice heating at these high powers. Similar

data at a factor of 30 lower power shows a much more rapid arrival in the

well, thus, displaying a Maxwellian lineshape at earlier times. There still

seems to be a slow thermalization taking place. The effective temperature of

the top spectrum in Fig. 18 as determined from its FWHM is about 3.5 K at a

bath temperature of 1.3 K.

The data described in this paper show a rather slow thermalization of

0r
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paraexcitons in a stress-induced parabolic potential well. The time-resolved

spatial profiles indicate that the excitons are able to "fill" the well in

times < 200 ns, due to their rather large diffusion constant. But the

effective temperature derived from the spectral distribution remains I to 3 K

above the lattice temperature over the lifetime of the particle, with the

amount of heating dependent on excitation power. In contrast, when no stress

is applied to the crystal, the paraexcitons thermalize much more quickly, even

under fairly higher laser excitation. What is the major difference between

these two situations?

It is known that external uniaxial stress causes the energy separation

between the paraexciton and the down-shifted component of the orthoexciton to

decrease, and paraexcitons are produced by the down conversion of

orthoexcitons. Ortho-para down conversion has been studied to some

extent7 '16 ,2C but there is still no consensus as to the exact processes

involved. With no stress applied, 96 cm- 1 (12 meV) of energy must be given

off during the down-conversion. This may occur via the emission of an 87 cm- I

optical phonon of symmetry r25 and an acoustic phonon.20  However, the

predicted temperature dependence for the rate of this process was not observed

by Weiner et al. 16

The participation of this 87 cm- 1 optical phonon may still provide a key

to explaining the difference in stress and unstressed thermalization times.

When a stress of only about 1 kbar is applied to the crystal, the energy

separation between the paraexciton and the down-shifted orthoexciton levels

becoes lss han 7 c-1
becomes less than 87 cm 1, which could alter the down-conversion process,

possibly resulting in a hotter initial distribution of paraexcitons which must

then thermalize down to the lattice temperature.
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VII. Summary and Conclusions

Excitons in a direct-gap semiconductor have been successfully strain-

confined for the first time. In contrast to the cases of the indirect gap

materials Si and Ge, where the potential well arises from a splitting of a

degenerate conduction band, here the stress-induced potential well at the SSm

is due to an interaction between the valence bands causing the symmetry-

lowering component of the applied stress to be the dominating factor.

Specific predictions are made for the luminescence lineshapes and spatial

profiles of luminescence emitted by strain-confined excitons. It is found

that as the system of excitons is allowed to become quantum-degenerate, the

phonon-assisted line gives little indication of the occurence of the Bose

degeneracy; however, the no-phonon line should show significant changes as

degenerate Bose statistics sets in. For this reason, the existence of a no-

phonon transition, such as is the case in a direct-gap semiconductor, may

prove quite beneficial when trying to observe quantum statistical behavior for

excitons in a parabolic well.

Spectral lineshapes of paraexciton luminescence emitted from the weli

area for both the no-phonon and the phonon-assisted lines of Cu20 have been

studied. Discrepancies between fit temperatures of the no-phonon and the

phonon-assisted lines are found under the assumption of a simple lineshape

theory and Maxwell-Boltzmann statistics for the decaying excitons. On the

other hand, both the direct and phonon-assisted paraexciton luminescence

lineshapes could be accounted for with the same effective temperature in the

simple lineshape theory by invoking Bose degeneracy of the decaying

paraexcitons. However, the estimated densities were much too low,

invalidating this assumption. A plausible alternate explanation incorporates
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the stress dependence of the paraexciton no-phonon transition and yields

consistent results in the classical statistical limit. There was a good

correspondence between the measured no-phonon lineshapes and spatial profiles.

The intensity of ortho- and paraexciton luminescence emitted from the

well region was also studied as a function of laser power. The paraexciton

intensity displayed a very sublinear dependence at high laser powers. This

sublinear behavior was attributed to an Auger decay mechanism resulting from

collisions among the paraexcitons. Due to the thermalization of the free

electron and hole created in the Auger decay process, there was an additional

source of orthoexcitons; hence, the appearance of orthoexciton signal in the

well even if the excitation source was located at a large distance from the

well.

Lastly, time-resolved data were presented which explored the

thermalization of paraexcitons in the parabolic well under various excitation

conditions. Even under fairly mild excitation conditions there seemed to be a

very slow thermalization taking place. This was contrary to the more rapid

thermalization observed for the paraexcitons in crystals with no stress

applied. Also, under intense laser excitation, significant lattice heating

occurred.

In attempting to achieve Bose-Einstein condensation of long-lived

paraexcitons in Cu20, we have thus encountered two barriers. The principal

one is the limitation of exciton density due to Auger collisions even at quite

small particle densities (> 1014 cm-3). A secondary barrier is the rather

slow thermalization of excitons in the well. These formidable difficulties

must be surmounted before Bose-Einstein condensation of long-lived

paraexcitons confined to a strain well can be realized in Cu2 0.
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Figure Captions

Fig. 1 Theoretical predictions for the luminescence lineshape (part a) and

the spatial profile (part b) of a phonon-assisted emission line

from excitons confined to a parabolic potential well. The

different curves are for varying degrees of quantum degeneracy.

Note the little change that occurs in both the luminescence line-

shape and the spatial profile when some quantum degeneracy is

assumed. The bottom trace in each part schematically includes

macroscopic occupancy of the ground state when U = 0.

Fig. 2 Theoretical predictions for the luminescence lineshape (part a) and

spatial profiles (part b) of a no-phonon emission line from

excitons confined to a parabolic potential well. The different

curves are for varying degrees of quantum degeneracy. There are

significant changes in both the luminescence lineshape and the

spatial profile when some degeneracy is assumed. The bottom trace

in each part schematically includes macroscopic occupancy of the

ground state when U = 0. Both these degenerate traces have

singularities which are shown as the arrows pointing upwards.

Fig. 3 Luminescence spectra taken with no stress applied to the crystal

(lower trace), and with a stress of about 3.6 kbar at the shear-

stress maximum (upper trace). Note the different wavelength scales

for the two spectra. X0 is the no-phonon orthoexciton emission and

the other lines are phonon replicas of the orthoexciton labeled by

the symmetry of the optical phonon emitted, with the exception of

the X - r2 5 line which is the phonon-assisted paraexciton

emission. A new line appears when uniaxial stress is applied to
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the crystal -- the no-phonon paraexciton line labeled X . This
P

line is cut off at about 1/8 its maximum intensity and the

- r12 line is cut off at about 1/3 its maximum intensity.

Fig. 4 Energy position of the paraexciton as a function of applied stress,

a. The data were obtained by using the measured energy shift of

the orthoexciton line as the stress calibrator. The fit to the

orthoexciton versus stress data given in Ref. 13 was used as the

calibrating curve. The solid curve is a fit of Eq. 15 to the data

with the values A = 16298 cm - , B = 4.96 cm -kbar and C = 7.36

cm-1 kbar- 2 . The contribution of the separate terms of Eq. 15 are

shown as the dashed curves. The dominance of the Ca2 term at high

stresses makes the shear-stress maximum an energy minimum for the

paraexcitons.

Fig. 5 Photograph of a Cu2 0 crystal with stress applied by a glass

plunger. An argon-ion laser excites the surface of the sample.

The created excitons drift in the stress gradient to the shear-

stress maximum where they are confined. This region is the bright

spot near the top of the sample. The luminescence seen above the

sample is due to a reflection from the glass plunger. The sample

dimensions are 1.5 x 1.5 x 1.5 mm3 .

Fig. 6 No-phonon paraexciton luminescence lineshapes for three bath

temperatures taken using "dynamic spatial integration" of

luminescence emitted from the potential well as explained in the

text. The fits to the data (solid dots) are the nondegenerate

limit of Eq. 9 (i.e., E 1/2 exp(-E/kBT)) convolved with the

resolution function shown at the left of each trace. The resultant

fit temperatures are given at the left and the bath temperatures

,I
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are given at the right. The magnitude of the applied stress was

about 3.6 kbar.

Fig. 7 Phonon-assisted paraexciton luminescence lineshapes for the same

bath temperatures as Fig. 6 taken using "dynamic spatial

integration" of luminescence emitted from the potential well. The

fits to the data (solid dots) are the nondegenerate limit of Eq. 6

(i.e., E2exp(-E/kBT)) convolved with the resolution function shown

in the upper right-hand corner. Fit temperatures are shown at the

left. The "fit" temperature of 7.5 K for the top trace is a bit

uncertain due to ambiguous baseline determination which is a result

of nearby orthoexcitation phonon-assisted lines. The determination

of this temperature is explained in the text.

Fig. 8 No-phonon paraexciton luminescence lineshapes again, the same data

as in Fig. 6. These fits to the data (solid dots) are Eq. 9

assuming some quantum degeneracy. The fit temperatures for the

lower two spectra were fixed at the values obtained for the phonon-

assisted lineshapes (see Fig. 7) and the chemical potential, 1, was

allowed to vary. The resulting values of ji are given at the left

as a fraction of kBT where T is the fit temperature. For the upper

spectrum, both T and p were varied for the best fit. Shown as the

x's is the corresponding nondegenerate lineshape with the same

temperature as the fit temperature given. The assumption here of

quantum degeneracy is actually invalid as explained in the text.

Fig. 9 Luminescence lineshape for the no-phonon paraexciton line taking

into account the variation in emission intensity with stress.

Maxwell-Boltzmann statistics ( >> k BT) is assumed. The broken

curves (circles, boxes and x's) are the components of the lineshape
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as given by the different terms in Eq. 19, with an inverted curve

indicating a negative contribution. The resultant lineshape is

shown as the solid curve. A temperature of 7.5 K was used with the

parameter n = 300 eV -1 . Note that this lineshape is narrower at a

given temperature than the lineshape given in Eq. 9.

Fig. 10 No-phonon paraexciton luminescence lineshapes again, the same data

as in Fig. 6. The fits to the data (solid dots) are Eq. 19

convolved with the resolution function shown at the left of each

curve and p >> kBT. A single value of n = 300 eV -1 was used for

all fits. Temperature was allowed to vary somewhat but good fits

were obtained with temperatures the same as or very close to the

fit temperatures obtained from the phonon-assisted lineshapes (see

Fig. 7).

Fig. 11 Spatial profiles of the no-phonon paraexciton line at the same bath

temperatures as Fig. 10. The fits to the data (solid dots) are Eq.

21 with the same value n = 300 eV-1 and the same fit temperatures

as those in Fig. 10. Shown in the upper right-hand corner is the

estimated spatial resolution.

Fig. 12 Intensity of the no-phonon paraexciton line and the r12 phonon

replica of the orthoexciton as a function of absorbed laser power.

The excitation configuration is shown in the inset. The laser is

absorbed in a region below the potential well and the excitons

drift upwards into the well (shown as the dot near the top of the

sample). The solid curves are fits of Eq. 25 to the data.

Fig. 13 Estimated density of paraexcitons as a function of absorbed laser

power when exciting the well area directly. The dependence is
abs

consistent with the Auger decay mechanism proposed in the text.
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Fig. 14 Intensity of ortho- and paraexciton luminescence as a function of

time after resonant creation of orthoexcitons at the shear-stress

maximum with a cavity-dumped dye laser pulse. The decays are

nonexponential. After an initial fast decay the orthoexciton

signal decays at twice the rate of the paraexciton signal. The

lines through the data are labeled with the corresponding I/e

times. Shown in the inset are the fast (solid squares) and the

slow (dots) decay times of the paraexciton signal as a function of

incident peak laser power. Note that as the power is lowered, the

decay seems to become much more exponential, i.e., one decay time.

Fig. 15 Time-resolved spectra of the phonon-assisted paraexciton line with

no stress applied to the crystal and intense cavity-dumped dye

laser, near-surface excitation. The fits to the data (solid dots)

are Maxwell-Boltzmann distribution El/2exp(-E/kBT) convolved with

the resolution function shown in the upper right-hand corner. Fit

temperatures are shown at the left with the delay time, t, given at

the right (t = 0 defined as near the center of the laser pulse).

Note that the excitons display a near thermal distribution of

particle energies at short delay times after the laser pulse.

Fig. 16 a) Time-resolved spectra of the no-phonon paraexciton line after

resonant creation of orthoexcitons at the shear-stress maximum.

There is 80 ns delay between displayed spectra, with the bottom

spectrum at the earliest time.

b) An effective temperature extracted from the full-width at half-

maximum of the spectra in (a) assuming a standard El/ 2 exp(-

E/kBTeff) form for the lineshape. As the paraexcitons expand to

fill the well, the luminescence lineshape broadens correspondingly.
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t - 0 is near the peak of the laser pulse.

Fig. 17 a) Time-resolved spatial profiles of no-phonon paraexciton

luminescence intensity, I(x), after resonant creation of ortho-

excitons at the shear-stress maximum. There is 80 ns delay between

displayed profiles.

b) Square of the full-width at half-maximum, A2 , as a function of

time. The solid line is a fit of Eq. 28 to the data with the para-

meters D = 190 cm2 /s, y = 5.6 x 106 sec - , and a "zero" of time

about 7 ns before the peak of the laser pulse (see text).

Fig. 18 Time-resolved spectra of the no-phonon paraexciton line emitted

from the well area while pumping horizontally below the potential

well with fairly intense laser excitation. The excitons drift into

the well. There is 80 ns time delay between displayed spectra with

the earliest time at the bottom. The strange shape of the spectra

at early times is due to the decay of particles on their way into

the well. Even for the latest time displayed, the spectrum

displays a distribution much hotter than the bath temperature.
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